Dissipative reaction diffusion systems with quadratic growth
نویسندگان
چکیده
منابع مشابه
Dissipative reaction diffusion systems with quadratic growth
We introduce a class of reaction diffusion systems of which weak solution exists global-in-time with relatively compact orbit in L. Reaction term in this class is quasi-positive, dissipative, and up to with quadratic growth rate. If the space dimension is less than or equal to two, the solution is classical and uniformly bounded. Provided with the entropy structure, on the other hand, this weak...
متن کاملBifurcation Pattern in Reaction-Diffusion Dissipative Systems
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملGlobal regularity of solutions to systems of reaction-diffusion with Sub-Quadratic Growth in any dimension
This paper is devoted to the study of the regularity of solutions to some systems of reaction– diffusion equations, with reaction terms having a subquadratic growth. We show the global boundedness and regularity of solutions, without smallness assumptions, in any dimension N . The proof is based on blow-up techniques. The natural entropy of the system plays a crucial role in the analysis. It al...
متن کاملAttractors for Partly Dissipative Reaction Diffusion SYstems in R^n
In this paper, we study the asymptotic behavior of solutions for the partly dissipative reaction diffusion equations in ޒ n. We prove the asymptotic compact-ness of the solutions and then establish the existence of the global attractor in 2 Ž n .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2019
ISSN: 0022-2518
DOI: 10.1512/iumj.2019.68.7447